Жесткая функциональная зависимость между коэффициентами , импульсной помехи открывает возможности такого построения решающей схемы приемного устройства, при котором наличие импульсных помех не увеличивает или почти не увеличивает вероятность ошибочного приема сигнала. В идеализированном случае, когда импульсы представляются дельта-функциями, возможно полное подавление импульсной помехи. При реальных импульсах конечной длительности помеха может быть подавлена почти полностью при условии, что и что за время приема одного элемента сигнала число мешающих импульсов достаточно мало.

Рис. 8.4. Схема, иллюстрирующая принципиальную возможность компенсации импульсных помех.

Пусть на вход приемного устройства (рис. 8.4) поступают сигнал, занимающий условную полосу частот , и импульсная помеха. Воздействие на прием неизбежно существующей флюктуационной помехи сначала не будем учитывать. Подадим принимаемый сигнал с помехами на два перемножителя, на которые поступают опорные напряжения и , где - целое число, такое, что частота лежит вне полосы частот сигнала. Например, можно выбрать или, как сделано на рис. 8.4, . Выходное напряжение перемножителей интегрируется в интервале , в результате чего получаются напряжения, пропорциональные и , которые подаются на специальную схему, вычисляющую значения и . Эти данные позволяют восстановить мешающий импульс, если он достаточно точно аппроксимируется дельта-функцией. Поскольку на интегрирование затрачивается время , восстановленный импульс оказывается задержанным на это время по сравнению с импульсом, поступившим на вход приемного устройства. Если принимаемый сигнал пропустить через линию задержки на время и вычесть из него восстановленный мешающий импульс, можно, в принципе, получить сигнал, освобожденный от импульсной помехи.

Приведенная схема, конечно, очень сложна для практического осуществления и рассматривается здесь лишь как доказательство принципиальной возможности полного подавления импульсной помехи в случае идеальных дельта-импульсов.

Ниже будут рассмотрены практически осуществимые методы полного или почти полного подавления импульсных помех. Однако прежде чем приступать к их описанию, полезно на примере идеализированной схемы рис. 8.4 уяснить некоторые общие закономерности, характерные для всех таких методов. Начнем с учета недостатков этой схемы и принципиальных возможностей их устранения.

Прежде всего, заметим, что схема рис. 8.4 позволяет скомпенсировать мешающий импульс только в том случае, если на протяжении длительности элемента сигнала он является единственным. Этот недостаток можно в значительной степени устранить путем усложнения схемы. Одна из возможностей заключается в том, что вместо разложения сигнала с помехой в ряд Фурье в интервале длительностью применяется разложение в интервале , где - некоторое целое число. При этом в отличие от схемы рис. 8.4, опорное напряжение должно иметь частоту, кратную не , а и по-прежнему лежащую вне полосы частот сигнала; интегрирование должно производиться за время , и на такое же время должна рассчитываться линия задержки. При этом могут быть скомпенсированы все мешающие импульсы, если в каждом из интервалов имеется не более одного импульса.

Другая возможность подавления мешающих импульсов, расположенных произвольно на протяжении элемента сигнала, заключается в использовании пар опорных напряжений и при различных с частотами, лежащими вне полосы частот сигнала. Это позволяет определить значений , которые могут быть подставлены в уравнении (8.34) для вычисления неизвестных и . Вычисление в принципе может быть произведено электронной схемой, и компенсация осуществляется так же, как на рис. 8.4.

Оба эти варианта позволяют скомпенсировать не более чем некоторое число мешающих импульсов, на которое рассчитана схема. Очевидно, создать схему, способную скомпенсировать любое сколь угодно большое число импульсов, принципиально невозможно, так как с увеличением импульсная помеха приближается к нормальному белому шуму.

Вернемся к схеме рис. 8.4, предназначенной для компенсации одиночных мешающих импульсов, и учтем влияние неизбежно присутствующей флюктуационной помехи. Её действие, как легко видеть, сказывается в том, что на схему вычисления параметров и поступают не коэффициенты и мешающего импульса, а суммы и , где и - коэффициенты при частоте разложения в ряд Фурье флюктуационной помехи на интервале . В результате этого параметры и будут вычислены неточно и полной компенсации мешающего импульса не произойдет. Более того, если на протяжении данного элемента сигнала мешающий импульс на вход приемника не поступает, компенсирующий импульс все равно будет сформирован под воздействием соответствующей составляющей флюктуационной помехи и прибавится с обратным знаком к сигналу. Поскольку коэффициенты ряда Фурье белого шума взаимно независимы, это не приведет к компенсации шума, а, наоборот, увеличит его спектральную плотность.

Таким образом, можно сказать, что схема рис. 8.4, осуществляя компенсацию импульсной помехи, как бы увеличивает интенсивность флюктуационной помехи. Впрочем, это увеличение спектральной плотности флюктуационной помехи обычно невелико по сравнению с .

Для уменьшения указанного недостатка можно прибегнуть к усложнению схемы, применив некоторое количество устройств для вычисления параметров и использующих различные частоты . Усреднив полученные значения этих параметров, можно повысить точность формирования компенсирующего импульса и свести увеличение интенсивности флюктуационной помехи к ничтожной величине. Если при этом нужно иметь возможность компенсировать импульсов, то потребуется пар опорных напряжений, перемножителей и интеграторов и схем, каждая из которых вычисляет параметры , с последующим усреднением по всем схемам.

Таким образом, компенсация импульсной помехи осуществляется тем более эффективно, чем более широкая полоса частот используется для анализа колебаний на входе приемного устройства. Этот вывод, как мы увидим из последующих примеров, является общим для всех известных методов подавления импульсных помех. Основанием для этого может служить тот факт, что главным отличием ряда (8.23) от аналогичного ряда для флюктуационной помехи является жесткая связь между коэффициентами . Используя наличие этой связи, которая, в частности, проявляется в малой длительности мешающего импульса, можно тем или иным методом обнаружить, проанализировать и устранить импульсную помеху. Естественно, что это возможно осуществить тем легче и полнее, чем большее количество коэффициентов ряда Фурье подвергнется анализу, т. е. чем более широкая полоса частот принимается во внимание в процессе приема.

Заметим, что все сказанное является справедливым лишь до тех пор, пока в расширенной полосе частот отсутствуют сосредоточенные помехи. В противном случае к коэффициентам , используемым для вычисления параметров и прибавятся составляющие сосредоточенной помехи и компенсирующий импульс окажется резко искаженным. В результате вместо компенсации импульсной помехи произойдет увеличение вероятности ошибки под действием сосредоточенной помехи, лежащей вне полосы частот, занимаемой сигналом.

Отсюда следует, что мероприятия по подавлению импульсных помех могут увеличить воздействие сосредоточенных помех, лежащих вне полосы частот сигнала. Этот недостаток проявляется в той или иной мере при всех методах подавления импульсных помех. Он обычно не может быть устранен полностью, и поэтому при построении схемы приемного устройства приходится принимать компромиссные решения, при которых импульсные помехи подавляются не полностью, но в значительной степени, а сосредоточенные помехи влияют на прием лишь не намного более чем в схеме, построенной без учета импульсных помех.

Обратим внимание на еще одну важную особенность схемы рис. 8.4, заключающуюся в использовании нелинейного устройства для вычисления параметров и . Это устройство должно быть нелинейным, что вытекает из нелинейного характера уравнений (8.25) или (8.34) относительно указанных параметров. Необходимость нелинейного устройства следует также из того, что коэффициенты ряда Фурье импульсной помехи взаимно не коррелированы и, следовательно, не связаны друг с другом какими-либо линейными зависимостями.

В реальных условиях мешающие импульсы не являются дельта-функциями. Обычно их можно рассматривать как результат прохождения дельта-функции через некоторую линейную цепь . В общем случае негауссовская помеха может быть описана, если для любого заданы -мерные функции распределения. Однако при сохранении импульсного характера помехи задача может быть упрощена. Пусть существует некоторое число , такое, что длительность мешающего импульса практически не превышает , где - по-прежнему длительность элемента сигнала. Если достаточно велико, то анализ элемента приходящего сигнала можно в первом приближении заменить анализом его значений отсчетов в дискретные моменты времени через интервалы . Значения помехи в этих точках можно считать независимыми, и поэтому для нахождения функции правдоподобия и построения правила решения достаточно знать одномерное распределение вероятностей помехи. Это сделано в работе , содержание которой вкратце заключается в следующем.

Пусть одномерная плотность распределения вероятностей помехи равна . Ограничиваясь значениями принимаемого сигнала в моменты времени , где , - целое число, можно представить функцию правдоподобия для сигнала в виде

, (8.35)

Для простоты ограничимся рассмотрением двоичной системы, тогда оптимальное правило приема по критерию максимального правдоподобия заключается в выборе решения о том, что передавался , если

. (8.36)

Обозначим и разложим каждое слагаемое (8.36) в ряд Тейлора вокруг . Это всегда возможно, если функция непрерывна, ограничена и всюду отлична от нуля, что мы будем предполагать. Тогда правило решения можно представить в виде

, (8.37)

. (8.38)

Функция может быть получена в результате прохождения принимаемого сигнала через безынерционный нелинейный четырехполюсник с характеристикой.

Таким образом, решающую схему можно представить в виде бесконечного числа ветвей, каждая из которых содержит нелинейный четырехполюсник (8.39) и пару фильтров, согласованных соответственно с и (рис. 8.5).

Ограничиваясь конечным числом ветвей в схеме рис. 8.5, получим субоптимальную решающую схему. В частности, если мощность сигнала мала по сравнению с мощностью помехи в анализируемой полосе частот (что, как правило, выполняется в широкополосном тракте приемника), можно ограничиться одной ветвью и получить субоптимальную схему, изображенную на рис. 8.6.

Плотность распределения вероятностей импульсных помех во многих случаях хорошо аппроксимируется функцией

, (8.40)

.

Рис. 8.6. Субоптимальная решающая схема для приема двоичных сигналов в канале с импульсными помехами.

В частном случае, когда , распределение (8.40) становится нормальным. Это имеет место, когда импульсы проходят через узкополосный фильтр и следуют друг за другом столь часто, что вызываемые ими реакции полностью прекрываются. При этом, как и следовало ожидать, нелинейный четырехполюсник в схеме рис. 8.6 вырождается в линейный. Более того, в схеме рис. 8.5 все остальные четырехполюсники, кроме первого, оказываются разорванными, так как из (8.39) при имеем . Таким образом, оптимальная решающая схема вырождается в котельниковскую.

В другом крайнем случае, полностью непрерывающихся импульсов, и характеристикой четырехполюсника в схеме рис. 8.6 будет . При получим четырехполюсник с характеристикой , т. е. идеальный ограничитель.

Как показано в , субоптимальная схема рис. 8.6 позволяет существенно подавить импульсную помеху. Это подавление тем значительнее, чем меньше . При происходит полное подавление импульсной помехи.

В импульсных источниках питания помехи возникают при переключении ключевых элементов. Эти помехи наводятся на кабель питания, подключенный к сети переменного тока. Поэтому необходимо принимать меры для их подавления.

Типовое решение сетевого фильтра электромагнитных помех для импульсного источника питания

Для подавления помех, проникающих через кабель питания в первичную цепь из импульсного источника питания, применяется приведенная на рисунке 9 схема.

Рисунок 9 - Подавления помех, проникающих через кабель

Дифференциальные и синфазные помехи

Помехи бывают двух типов: дифференциальные и синфазные. Ток дифференциальной помехи, наведенный на оба провода линии питания, протекает по ним в противоположных направлениях, как показано на рисунке 10. Ток синфазной помехи протекает по всем линиям в одном направлении, смотреть рисунок 11.

Рисунок 10 - Дифференциальная помеха


Рисунок 11 - Синфазная помеха

Функциональное назначение элементов сетевого фильтра

На рисунках, представленных ниже, приведены примеры использования различных элементов фильтра и графики, иллюстрирующие эффект от их применения. Приведенные графики показывают изменение интенсивности дифференциальных и синфазных помех импульсного источника питания относительно уровня индустриальных помех. На рисунке 12 представлены графики сигналов в отсутствие фильтра на входе импульсного источника питания. Как видно из графика, уровень дифференциальных и синфазных помех достаточно высок. Рисунок 13 иллюстрирует пример использования фильтрующего X-конденсатора. На графике видно заметное снижение уровня дифференциальных помех.

На рисунке 14 представлены результаты совместного использования X-конденсаторов и Y-конденсаторов. График наглядно показывает эффективное подавление как синфазных, таки дифференциальных помех. Применение X-конденсаторов и Y-конденсаторов в комбинации с синфазным дросселем (дросселем для подавления синфазных помех) показано на рисунке 15. График отражает дальнейшее снижение уровня и дифференциальных, и синфазных помех. Это происходит потому, что реальный синфазный дроссель имеет некоторую дифференциальную индуктивность.


Рисунок 12 - Без фильтра


Рисунок 13 - С использованием Х-конденсатора


Рисунок 14 - С использованием Х-конденсатора и Y-конденсатора


Рисунок 15 - С использованием Х-конденсатора, Y-конденсатора и синфазного дросселя

Пример подавления помех в мобильном телефоне

Источники излучаемых помех

Помехи, создаваемые блоком обработки сигналов, проходят в ВЧ блок, что приводит к значительному ухудшению чувствительности. Блок обработки сигналов мобильного телефона, который обычно построен на ИС обработки сигналов в основной полосе частот, управляет различными сигналами, такими как речевой сигнал и сигнал для ЖК-дисплея. ИС обработки сигналов является источником значительных помех, поскольку работает на высокой частоте и к ней подсоединены множество линий передачи данных. При прохождении помех по линиям передачи данных или шинам питания/GND из блока обработки сигналов в ВЧ блок происходит ухудшение его чувствительности, в результате увеличивается частота появления ошибочных битов (Bit Error Rate - BER).

Компоненты для подавления помех в мобильных телефонах

Для улучшения параметра BER (Bit Error Rate), то есть уменьшения процента принятых ошибочных битов, необходимо подавить помехи, проникающие из блока обработки сигналов в ВЧ блок. Для этого следует установить EMI-фильтры на всех шинах, соединяющих данные блоки. Кроме того, важно также экранировать блок обработки сигналов, поскольку излучаемый им уровень помех в последних моделях мобильных телефонов значительно возрос.

Установка фильтров на шине управления дисплеем

Шина управления ЖК-дисплеем содержит множество линий передачи сигналов, переключающихся одновременно, что вызывает значительное увеличение импульсного тока, протекающего в цепях земли (GND) и питания. Поэтому необходимо ограничивать ток, протекающий по сигнальным линиям. Обычно для этого используются матрицы ферритовых чип-бусин серии BLA31 и чип-фильтры EMIFIL® серии NFA31G с резистором. Если по конструктивным причинам применение указанных компонентов невозможно, то для подавления помех, проходящих через гибкий кабель ЖК-дисплея, следует использовать EMC-абсорберы серии EA.

Улучшение экранирования

Обычно на внутреннюю поверхность пластикового корпуса мобильного телефона наносят токопроводящее покрытие. При расширении функциональности мобильного телефона уровень помех от блока обработки сигналов также увеличивается. Поэтому необходимо экранировать блок обработки сигналов с такой же тщательностью, как и ВЧ блок. При разработке корпуса мобильного телефона, для снижения импеданса на высокой частоте нужно стараться обеспечить как можно большую площадь контакта между частями корпуса. Для улучшения экранирования, в блоке обработки сигналов, где это, возможно, следует применять металлические экранирующие элементы или EMC-абсорберы.

Под импульсными наводками понимаются различные виды помех, создаваемых скачками постоянного или переменного напряжения или тока, происходящими в любых цепях и приборах. К импульсным наводкам относятся:

непосредственная наводка видеоимпульсов;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами или прохождение через них спектра частотвидеоимпульсов, получающихсявспециальныхгенераторах, подсобных цепях различных устройстви телевизорах;

ударноевозбуждениевысокочастотных устройств, возникающее при работе коллекторных моторов, реле, выключателей, телефонных аппаратови другой контактнойаппаратуры;

ударноевозбуждениевысокочастотных устройстввидеоимпульсами, получающимися в результате детектирования импульсов высокой

частоты в перегруженных усилительных каскадах и в других нелинейных сопротивлениях.

Источники и пути прохождения таких наводок были рассмотрены в § 1-7, 1-8, 1-9, 1-10, 1-11, 1-12.

Первым этапом работы по подавлению импульсных наводок является выяснение конкретных их источников и путей связи с приемником наводок.

Для этого необходимо:

а) Поочередно выключать всевозможные цепи и части устройств до полного исчезновения помехи или ее уменьшения.

б) Уменьшать крутизну скачков, подключая сглаживающие фильтры к различным точкам, в которых наблюдаются скачки, добиваясь этим уменьшения наводки и измененияформынаводимогоимпульса.

в) Увеличивать длительность импульсов в различных цепях, наблюдая, как они искажаются на выходе приемника наводки с тем, чтобы выяснить, не происходит ли их дифференцирование или интегрирование (если они поступают непосредственно на видеоусилитель) или разделение на два (если они проходят через усилитель высокой или промежуточной частоты и де-

тектор), рис. 1-18 и1-29.

г) Выключать в приемнике наводки последовательно, начиная от входа (антенны), различные каскады и другие цепи, добиваясь исчезновения наводки.

д) Шунтировать конденсатором большой емкости с короткими выводами различные цепи, по которым может передаваться наводка, и добиваться ее

уменьшения.

В результате первого этапа работы должна быть составлена четкая схема, хотя бы одного канала связи, по которому проходит помеха. При этом должны быть известны источник наводки, его выход, цепи связи, вход приемника, цепииметодыпрохожденияимпульсавприемникенаводки.

Вторым этапом работы является внесение в прибор изменений, необходимых для подавления наводки. При этом нужно иметь в виду, что в зависимости от характера импульсных наводок они подавляются следующими способами.

Для подавления наводки от видеоимпульсов и других скачков постоянного напряжения, поступающих непосредственно на видеоусилители, усилители низкой частоты и другие устройства без резонансных усилителей высокой частоты по одной из схем рис. 1-28, необходимо ввести дополнительные детали, ослабляющиесвязьмеждуисточником и приемником наводки

2. Наводка от стробирующих видеоимпульсов, подаваемых на усилители высокой частоты для управления усилением, получается вследствие резких скачков анодного тока управляемых ламп, приводящих к ударному возбуждению контуров усилителя. Для подавления такой наводки необходимо снижать крутизну краев стробирующих импульсов. Если такое сглаживание управляющего импульса недопустимо, то единственным способом подавления наводки будет применение в управляемых каскадах усилителя высокой частоты двухтактных схем сподачей стробимпульсанасреднюю точку сеточнойобмоткитрансформатора.

3. Все другие виды ударного возбуждения усилителей высокой частоты (радиоприемников) видеоимпульсами и любыми скачками постоянного напряжения возникают большей частью путем проникновения помех на входные цепи усилителя (антенну) вместе с полезными сигналами. Подавление таких наводок производится у источника в первую очередь включением фильтров в цепи питания источника наводки и экранированием в

нем сети питания, как разобрано в предыдущем параграфе.

В редких случаях близкого расположения источника подобной наводки с ее приемником (на расстояниях 1 м и менее), кроме фильтров, может понадобиться полное экранирование источника помещением его в металлический кожух (например, экранирование реле, находящегося у антенного ввода радиоприемника) или частичное экранирование внутренних элементов источника (например, экранирование графитового покрытия электроннолучевой трубки в телевизорах, рекомендуемое в литературе

туре.

4. При подавлении наводки высокочастотных импульсов, поступающих на усилитель высокой частоты, не настроенный на несущую частоту импульсов, необходимо, чтобы в элементах приемника наводки не происходило детектирования мешающих импульсов, т. е. чтобы приемник наводки не перегружался и работал в линейном режиме. Для этого нужно снижать напряжение помехи в цепи, находящейся перед первым нелинейным элементом приемника (лампой или полупроводниковым детектором). Избирательность преселектора, состоящего из одного или двух контуров, оказывается недостаточной при подаче на него высокочастотных импульсов большоймощности.

Если радиоприемник заново проектируется для совместной работы с мощными импульсными генераторами высокой частоты, то он должен быть снабжен специальным многоконтурным преселектром, обеспечивающим большое ослабление сигналов любых частот, кроме входящих в полосу пропускания приемника. Если же требуется приспособить готовый радиоприемник дляуказанной цели, то можно получить хороший результат, если добавить в вод антенны одноили двухячеечный фильтр, рассчитанный на ослабление несущей частоты мешающих импульсов.

Трудности в разработке такого фильтра заключаются в том, что он должен одновременно удовлетворять двум требованиям: не ухудшать показатели приемника и давать достаточно большое ослабление помехи. Если мешающие импульсы имеют весьма высокую несущую частоту, то достаточно незначительной емкостной связи внутри приемника между любыми проводами, входящими в приемник извне, и деталями высокочастотной части приемника, чтобы мешающий импульс поступил помимо преселектора или ан-

тенного фильтра. Поэтомув приемниках, работающих в таких условиях, необходимо иметь фильтрующие ячейки в местах ввода любых проводов, включая телефонный шнур в приемнике радиосвязи.

5. Уровень ударного возбуждения высокочастными импульсами весьма невысок (§ 1-10 и 1-11). Поэтому такая помеха поступает на приемник наводки только через антенный ввод на тех же частотах, что и полезные сигналы. Единственным способом подавления этой наводки является ограничение спектра частот, излучаемого импульсным генератором высокой частоты.

4-9. ПРИМЕНЕНИЕ ДВОЙНЫХ ЛАМП

Среди собранных в одном баллоне двойных ламп имеется большое число триодов (буква Н на втором месте условного обозначения) и несколько типов триод-пентодов (букваФ на втором месте условного обозначения). Конструкции отдельных типов двойных ламп выполнены различно. В некоторых типах ламп между частями лампы имеется экран с отдельным выводом, в других конструкциях экран соединен с одним из катодови

в третьих - экран отсутствует вовсе.

В технических условиях на двойные лампы большей частью оговаривается емкость между анодами или между анодом одной половины и сеткой другой половины. Величина этих емкостей колеблется в пределах 0,02- 0,5 пф в зависимости от типа лампы. Они являются звеном, связывающим цепи, в которые включены различные половины одной лампы. В технических условиях на некоторые типы двойных ламп величины связывающих емкостей не оговорены вовсе. При этом они могут быть довольно велики и могут изменяться от экземпляра к экземпляру в широких пределах.

Кроме емкостной связи, между отдельными частями двойной лампы может существовать связь за счет электронного потока, проникающего через щели и отверстия в конструкции лампы из одной половины на электроды другой половины. Этот вид связи техническими условиями не предусмотрен, хотя иногда и может оказаться недопустимым.

В результате разбора влияния обоих видов связи можно дать следующие рекомендации по применению двойных ламп. Лучше всего такие лампы работают в схемах с сильной связью обеих частей друг с другом: мультивибраторы, кипп-реле, триггеры, блокинг-генераторы с пусковой лампой, двухфазные и двухтактные усилители, преобразователи частоты, состоящие из смесителя и гетеродина, и т. д. Хорошо работают двойные лампы в двух соседних усилительных каскадах на не очень высоких частотах. При ис-

Применение двойных ламп в двух разных каналах радиоприбора в принципе нежелательно и к нему следует прибегать только в случаях крайней необходимости. При этом следует сравнить уровни переменных напряжений и мощностей в обоих совмещаемых элементах. Чем меньше отличаются друг от друга эти уровни, тем более вероятно, что применение двойной лампыпройдет безболезненно.

ными проводами также представляет собой СВЧ резонансный контур, настроенный емкостью сетка- катод.

Оба контура связаны через емкость сетка - экранирующая сетка Сg1,2 , играющую здесь роль проходной емкости.

Таким образом, схема цепей катода, эк- Рис. 4-23. Генерация усилительного ранирующей и управляющей сеток экви-каскада на СВЧ.

валентна схеме генератора на триоде со связью через внутриламповую проходную емкость. При благоприятном (с

возникаетгенерация.

Возникнув в промежуточных каскадах, эта генерация может явно не проявиться, а повлиять на такие обычно редко контролируемые параметры, как анодный ток отдельных ламп, линейность амплитудной характеристики т. д. Иногда эта же генерация, изменяя режим работы усилителя, может послужить причиной обратных связей по основной частоте. С уничтожением такой генерации одновременно пропадет искажение частотных характеристик усилителя.

Подобная

генерация

особенно

возникает в выходных каскадах усилителей

видеоусилителей,

собираемых

на мощных

пентодах или

родах при параллельном соединении двух и

с анодной

катодной

нагрузкой.

Здесь (рис. 4-24)

соединительные провода между управляющими

и экранирующими сетками обеих ламп пред-

Рис. 4-24. Генерация усили-ставляют собой

симметричной

тельного каскада на СВЧ при нии,

включенной

по двухтактной схеме,

параллельномсоединенииламп.

применяемой обычно в генераторах ультрако-

роткихволн.

Такую же схему двухтактного генератора СВЧ легко увидеть в схеме катодного повторителя с параллельным выключением ламп, если учесть индуктивности и емкости соединительных проводов между анодами и между сетками.

Несколько легче обнаруживается генерация на СВЧ в мощных усилительных каскадах низкой частоты по свечению неоновой лампы. Для проведения такого эксперимента лампочку небольших размеров прикрепляют к

В настоящее время в большинстве электронных устройств источников постоянного напряжения используются встроенные или внешние импульсные блоки питания (ИБП). Основной принцип работы (ИБП) заключается в том, что сетевое переменное напряжение сначала выпрямляется, далее преобразуется в переменное высокочастотное напряжение прямоугольной формы, которое затем понижается или повышается трансформатором до необходимых значений, далее выпрямляется, фильтруется и стабилизируется посредством обратной связи (ОС).

Широкое распространение (ИБП) обусловлено несколькими причинами: небольшим весом, малыми габаритами, высоким КПД, низкой стоимостью, широким диапазоном питающего сетевого напряжения и частоты, высокой степенью стабилизации выходного напряжения и т.д.

К недостаткам (ИБП) можно отнести то, что все они без исключения являются источниками интенсивных электромагнитных помех (ЭПМ), это связано с принципом работы схемы преобразователя, т.к. сигналы в (ИБП) представляют собой периодическую последовательность импульсов. Спектры таких сигналов занимают диапазон частот шириной до нескольких мегагерц. Помехи могут распространяться в виде токов, текущих в проводящих элементах, контуре заземления и самой земле (кондуктивные помехи ) и в виде электромагнитных полей в непроводящих средах (индуктивные помехи ).

Так же сами (ИБП) довольно восприимчивы к влиянию внешних (ЭПМ). В этой связи возникает необходимость, как подавлять помехи, которые они генерируют и наводят в питающую сеть, так и защищать их от внешних помех, проникающих из питающей сети. Для этой цели (ИБП) в обязательном порядке должен иметь сетевой фильтр подавления (ЭПМ), или как его еще называют EMI - фильтр (рис. 1).

Рис.1 Встроенный сетевой фильтр подавления электромагнитных помех.

Надо отметить, что такой фильтр будет работать как в прямом, так и в обратном направлении, т.е. ослабит как входящие, так и исходящие помехи.

Кондуктивная помеха по питающей сети имеет две составляющих – противофазную и синфазную.

Это напряжение помехи между шинами питания, фазой (L ) и нулем (N ) питающей сети. Ток противофазной помехи, наведенный на оба провода питающей сети, протекает по ним в противоположных направлениях (рис.2).

Противофазные напряжения помех непосредственно накладываются на напряжение питания питающей сети, воздействуют на линейную изоляцию между проводами и могут быть восприняты как управляющие сигналы в устройствах, и тем самым вызывать ложное срабатывание.

Синфазная (асимметричная, несимметричная) составляющая помехи - это напряжение помехи между шинами питания питающей сети и корпусом устройства (заземлением), т.е. между фазой (L) и землей (GND ) , нулем (N) и землей (GND ) . Ток синфазной помехи протекает по шинам питающей сети в одном направлении (рис.3).

Синфазные помехи обусловлены главным образом разностью потенциалов в цепях заземления устройства, вызванной токами в земле (аварийными, при замыканиях высоковольтных линий на землю, рабочими или токами молнии), а так же магнитными полями. Синфазные напряжения помех воздействуют на изоляцию проводов относительно земли и могут вести к электрическим пробоям. Так же может происходить частичное или полное преобразование синфазной помехи в противофазную.

Кроме сетевого фильтра входные цепи (ИБП) должны иметь защиту от короткого замыкания (Предохранитель ), импульсных бросков напряжения в питающей сети (Варистор и Супрессор ), ограничитель броска тока при включении (ИБП) в питающую сеть (Термистор ), а так же иметь защиту от внешних воздействий, например грозы или высоковольтного электрического пробоя (). На (рис. 4) показана схема многозвенного сетевого фильтра, обеспечивающего качественное подавление синфазных и дифференциальных помех с элементами защиты входных цепей (ИБП).

Рис.4 Схема многозвенного сетевого фильтра подавления (ЭПМ), с элементами защиты входных цепей (ИБП).

Схема фильтра реализована на основе двух фильтров нижних частот (ФНЧ) путем каскадного соединения (Г-образных) или (Т-образных) звеньев. Назначение элементов схемы сетевого фильтра следующее:

С Y 1, CY 2 - конденсаторы Y типа предназначены для подавления синфазной составляющей помехи. Выбор величины емкости конденсаторов CY, в первую очередь, определяется значением безопасного для человека тока заземления, величина которого для оборудования общего назначения составляет не более 2мА, а для медицинского не более 0,1мА. Емкость СY конденсаторов варьируется от 470пФ до 10000пФ, на рабочее напряжение 3кВ. Какая бы не была емкость СY конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Y2 , которые выдерживают импульсы до 5кВ. Увеличение емкости конденсаторов CY улучшает фильтрацию синфазных помех, но увеличивает ток утечки.

С X 1, CX 2, CX 3-к онденсаторы X типа предназначены для подавления противофазной составляющей помехи. Задача СХ конденсаторов не пропускать помехи из внешней питающей сети в (ИБП), а так же не выпускать помехи, созданные самим (ИБП) во внешнюю питающую сеть.

Сопротивление конденсаторов CX уменьшается с ростом частоты, следовательно, помехи и резкие скачки напряжения шунтируются (закорачиваются) на входе и выходе сетевого фильтра. Емкость СX конденсаторов варьируется от 0,1мкФ до 1мкФ и зависит от мощности (ИБП). Какая бы не была емкость СХ конденсаторов, полностью убрать помехи невозможно, можно только их уменьшить. Для однофазной питающей сети с номинальным напряжением до 250В используются конденсаторы класса Х2 , которые выдерживают импульсы до 2,5кВ. К конденсаторам типа СХ предъявляются высокие требования по безопасности. Они должны выдерживать максимально возможные всплески напряжения в питающей сети, не должны загораться и поддерживать горение. Увеличение емкости конденсатора CX улучшает фильтрацию дифференциальных помех, но приводит к увеличению реактивного тока.

L Y 1- синфазный дроссель используются для подавления синфазных помех. Он выполнен на тороидальном ферритовом сердечнике с достаточно высокой магнитной проницаемостью (μ) и имеет две идентичные обмотки (рис. 5).

Рис.5 Схема синфазного дросселя.

В случае появления синфазных токов помех, магнитные потоки обоих обмоток складываются, т.к. обмотки дросселя оказываются включенными последовательно с шинами питания фазой (L) и нулем (N) питающей сети. Входной импеданс увеличивается, что приводит к подавлению синфазных токов помех и значительному снижению амплитуды шумового сигнала. Индуктивное сопротивление XL растет с увеличением частоты синфазных помех: XL=2πfL, f-частота помех, L-индуктивность включенных последовательно обмоток дросселя.

Когда через обмотки протекают дифференциальные токи помех, они индуцируют низкочастотные магнитные поля, которые при таком включении имеют противоположные направления и взаимно компенсируют друг друга.

Таким образом, обмотки дросселя для синфазной составляющей помехи имеют большое индуктивное сопротивление, поскольку для синфазного тока они включены согласно. В то же время для противофазной составляющей помехи индуктивное сопротивление обмоток минимально, так как для противофазного тока они включены встречно.

Индуктивность синфазного дросселя LY определяется многими параметрами и лежит в диапазоне от 10мГн до 0,47мГн при токе потребления от 1A до 10A . Начальная магнитная проницаемость сердечника μ i = 6000-10000. Размеры ферритового сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов. Увеличение индуктивности синфазного дросселя улучшает фильтрацию, но приводит к увеличению активного сопротивления обмоток.

L X 1- Z –образный дроссель предназначен для подавления противофазных (дифференциальных) помех. Дроссель имеет две одинаковые обмотки намотанных сонаправленно, на тороидальном ферритовом сердечнике с зазором или магнитодиэлектрическом сердечнике из распыленного железа (Iron powder core) (рис. 6).

Рис.6 Схема Z –образного дросселя.

Индуктивность Z-образного дросселя LX зависит от многих параметров и лежит в диапазоне от 270мкГн до 47мкГн при токе потребления от 1А до 10A. Сердечник из распыленного железа может быть серии DT68-DT106. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

L1, L 2 - ВЧ дроссели обеспечивают дальнейшее ослабление высокочастотных помех. Включаются последовательно с шинами питания фазой (L) и нулем (N) питающей сети на выходе сетевого фильтра. Содержат мало витков и выполняются на ферритовых кольцах с малым значением магнитной проницаемости μ. Их применение позволяет расширить диапазон частот эффективного подавления помех фильтром до 50-60МГц. Индуктивность ВЧ дросселей лежит в диапазоне 5-10 µH и зависит от частоты ослабления ВЧ помех. Размеры сердечника и диаметр провода обмоток зависят от мощности (ИБП) с учетом пусковых токов.

R2, R 3 - резисторы уменьшают добротность L1, L2 для устранения резонансных явлений.

RK 1 – терморезистор (NTC термистор) предназначен для ограничения броска тока при включении (ИБП) в питающую сеть. Термистор - полупроводниковый прибор, электрическое сопротивление которого изменяется в зависимости от его температуры. Термисторы бывают двух типов: с положительным и отрицательным температурным коэффициентом. У термистора с положительным коэффициентом при повышении температуры сопротивление возрастает, а с отрицательным коэффициентом - уменьшается. Их сокращённые названия на английском языке: PTC (positive temperature coefficient ) и NTC (negative temperature coefficient ).

Термистор включается последовательно с одной из шин питания фазой (L) или нулем (N) питающей сети. NTC термистор, при температуре окружающей среды, имеет сопротивление в несколько Ом. В момент включения (ИБП) в питающую сеть, конденсатор выпрямителя заряжается, поэтому представляет собой короткозамкнутую нагрузку. В цепи питания происходит бросок тока, но термистор поглощает его, превращая в тепло. Далее термистор разогревается, его сопротивление падает почти до десятых долей Ома и он не влияет на работу устройства. Происходит так называемый мягкий пуск.

Термистор является инерционным элементом. Фактически при кратковременном отключении питания и повторном пуске, термистор не работает как элемент защиты, т.к. полностью восстанавливает свои свойства только через 5-10 мин. Температура термистора в рабочем состоянии, когда его сопротивления близкого к нулю, может доходить до 250 градусов.

R1 резистор обеспечивает быстрый разряд конденсаторов СX при отключении сетевого кабеля от питающей сети и необходим для безопасного обращения с устройством.

FV 1-разрядник предназначен для ограничения перенапряжений в электротехнических установках и электрических сетях . Разрядник состоит из электродов с искровым промежутком между ними и дугогасительного устройства. Один из электродов присоединяется к защищаемой цепи, другой - заземляется. Когда к такому устройству прикладывается высокое импульсное напряжение со скоростью около 1 кВ/мкс, возникает разряд. Чем меньше скорость нарастания фронта, тем выше должно быть напряжение, "зажигающее" разряд. Через такое устройство может проходить импульсный ток до 100кА. Несмотря на отличную способность снижать напряжение, разрядник имеет время реакции от сотен наносекунд до единиц микросекунд, что в десятки раз медленнее по сравнению с варисторами. Применение данных устройств актуально, где есть опасность прямого удара молнии в провода питающей сети или высоковольтных источниках питания, где есть вероятность попадания высокого напряжения на шины (L) или (N) питающей сети.

RU 1 - варистор защищает цепи от импульсных бросков напряжения или увеличивает скорость срабатывания плавкого предохранителя. Варистор – это полупроводниковый резистор, сопротивление которого резко изменяется при изменении приложенного напряжения выше номинального.

Варистор включается на входе сетевого фильтра параллельно входному сетевому напряжению 220В и фактически постоянно находится под этим напряжением, однако ток в этом состоянии через варистор очень мал т.к. его сопротивление в этом случае сотни МОм. В случае возникновения высоковольтного импульса напряжения способного вывести из строя (ИБП), варистор практически мгновенно изменяет своё сопротивление до десятков Ом, то есть шунтирует (закорачивает) цепь питания, ток в этом состоянии может достигать нескольких тысяч ампер, а поглощённая энергия рассеивается в виде тепла. Варистор не обладает инерцией, поэтому после поглощения импульса он мгновенно восстанавливает свои свойства.

Одного варистора может быть не достаточно в случае аварии на линии электроснабжения, когда вместо фазы и нуля по обоим проводам подали фазу. Для защиты от такого рода аварий целесообразно включать в схему нескольких варисторов, как показано на (рис.7).

Рис.7 Схема защитного треугольника на варисторах.

Эта схема из трех варисторов на входе сетевого фильтра надёжно блокирует проникновение импульса не только по фазовой цепи (L), но и по цепи нуля (N). Варистор RU1 подключается между фазой и нулевым проводником. Он осуществляет основную защиту. Два других RU2 и RU3 подключаются между фазой (L) и землей (Gnd), а так же между нулем (N) и землей (Gnd). Принцип работы RU2 аналогичен, описанному выше RU1. Варистор RU3 контролирует напряжение между нулем (N) и землей (Gnd). Если всё нормально, напряжения быть не должно или оно крайне мало (единицы вольт). В случае появления большого напряжения на проводе (N), как правило, фазы (L), варистор RU2 благополучно зашунтирует защищаемый блок.

VD 1-защитный диод TVS (Transient Voltage Suppressor) или супрессор обеспечивает подфильтровку остаточных перенапряжений, которые пройдут через варисторы, без заметных выбросов на шину заземления. Так как емкость варисторов составляет не менее 1000пФ, то они не позволяют фильтровать высокочастотные выбросы выше 100МГц. В таких случаях лучшим решением является применение быстродействующего супрессор-диода. Принцип работы супрессора основан на ярко выраженной нелинейной вольтамперной характеристике. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа, то он перейдет в режим лавинного пробоя, т.е. импульс напряжения будет ограничен до нормальной величины, а излишки уйдут на землю (GND). Отличительной чертой супрессоров является очень короткое время реакции на превышение напряжения, скорость переключения лежит в пикосекундном диапазоне. Супрессоры выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двухполярным напряжением, а несимметричные только с напряжением одной полярности. В маркировке супрессора 1.5КЕ400СА зашифрованы основные его характеристики. 1,5- Мощность 1500Вт; 400-напряжение пробоя 440В; С-двунаправленный (без буквы однонаправленный); А- допустимое отклонение напряжения 5%. Симметричный защитный диод 1.5КЕ440СА можно заменить двумя такими же однополярными (без индекса СА), включенным встречно. Для надежной защиты сетевого фильтра и входных цепей (ИБП) супрессоры включаются по схеме защитного треугольника, как и варисторы (рис. 7).

Для защиты от внешних индуктивных помех применяют экранирование, как всего (ИБП), так и отдельно сетевого фильтра. Экранирование выполняется за счет использования металлического корпуса, с обязательным соединением с шиной заземления . Это препятствует распространению излучаемых электромагнитных помех за пределы корпуса (ИБП), а так же подавляет внешние электромагнитные помехи, воздействующие на (ИБП).

Применение высокоэффективных индуктивно-емкостных помехоподавляющих фильтров позволяет обезопасить оборудование от вредного влияния входящих помех, а так же снизить исходящие помехи, которые генерируются внутри самого оборудования. Использование фильтров подавления (ЭПМ) - одно из основных требований по электромагнитной совместимости современного оборудования.

Компания Лазер-блок является производителем высоковольтных блоков питания для лазерных станков с СО2 излучателями. В выпускаемых нами блоках питания для лазерных станков , или как их еще называют, блоки розжига для лазера , мы используем только высококачественные электронные компоненты, которые закупаем со всего мира, а так же используем и отечественные аналоги, которые славятся своим запасом прочности. Наши инженеры постоянно проводят исследования в лаборатории, внося корректировки в схемы.

В последние годы ваш HiFi или даже High-End аудио комплекс всё меньше радует детальностью, сочностью и прозрачностью звучания? Вы подумываете обновить всю систему? Или вы уже подыскиваете качественный сетевой фильтр ? Если последнее - вы на верном пути 😉

Посчитаем?

В этом веке количество источников электромагнитных помех в наших домах растёт по экспоненте. Оглядитесь, попробуйте посчитать, сколько на вид безобидных лёгких и маленьких зарядных устройств, экономичных ламп, "электронных трансформаторов" для галогенок, компьютеров, принтеров, и прочей электроники с питанием от сети и/или всевозможными "зарядниками" пришло в ваш дом за последнее десятилетие? Пальцев не хватило, даже вместе с ногами, женой и... то-то! 🙂

Сегодня пожалуй 95% источников сетевого питания построены на базе высокочастотного преобразователя и не используют старые громоздкие и тяжёлые, гудящие трансформаторы на 50 (60) Герц. Ура, партия зелёных торжествует: большинство таких преобразователей весьма экономичны, компактны и... каждый такой импульсный блок питания а ) свистит на частоте преобразования и гармониках и б ) создаёт броски зарядного тока во входном выпрямителе (весьма широкополосная помеха - и прямиком в сеть).

В по-настоящему качественных (и дорогих) импульсных источниках питания с помехами борются весьма успешно, но всё равно недостаточно, чтобы весь производимый ими электромусор остался незаметным для чувствительных ушей меломана. Да что там меломаны... У нас в доме старый добрый 39-мегагерцовый радио-телефон. Постепенно он начал гудеть и жужжать так, что я серьёзно собирался сменить аппарат. Но пользуемся мы им относительно редко и проблема однажды решилась сама собою, когда я в погоне за красивым звуком повырубал к чертям все импульсные блоки питания вкупе с компьютерами в доме. После того эксперимента, кстати, и появились у нас вот эти .

Так что же покупить?

В этой статье я не подскажу, какой сетевой фильтр надо покупать. Причины две: за разумные деньги я не встречал адекватных фильтров; а те фильтры, что я мог бы порекомендовать - стоили совершенно несообразно, да и места занимали много больше, чем выполняемая ими функция того требует. Тем не менее решение существует: для умелых рук - собирать фильтры самому, и я постараюсь разъяснить его работу настолько, что любой, кто дружен с паяльником, сможет снабдить свою аппаратуру адекватной защитой от электромагнитных помех, проникающих из питающей сети. Если же вы не имеете возможности, либо желания дышать канифолью - покажите статью товарищу, который сможет вам помочь.

Грамотные производители должны были всё предусмотреть!

Фиг-вам! (изба такая индейская (с) кот Матроскин)

Открываем CD-проигрыватель, купленный в своё время за шесть сотен "зелёных". И что мы видим: рудиментарный сетевой фильтр тут имеется, но увы, лишь нарисованный шелкографией на плате, на дросселе и конденсаторах сэкономили. Вполне допускаю, что в их комнатах прослушивания, с идеальной фильтрацией питания, фильтр тот был и не нужен - не услышали "гуру" разницы от отсутствия фильтра. Ну и внесли "рацуху" - пошёл аппарат в массы голенький и беззащитный супротиву нового поколения электронных домов...

За работу!

В принципе, качественные фильтры промышленность выпускает. Только стОят они опять же дороговато. Этакие полностью экранированные коробочки со схемкой на боку. Катушечки там, конденсаторчики. Давайте же разберёмся, что там для чего, и соберём сами из доступных деталюх. Кстати, в пику аудиоманьякам я утверждаю, что грамотный сетевой фильтр в устройстве, собранный из качественных обычных (не аудиофильских) компонентов - гораздо эффективнее и "звучит" лучше, нежели любые самые эзотерические кабели питания, а так же и большинство "аудиофильских" же фильтров питания. Спорим? 😉

Скажи мне, кто твой враг

1) Дифференциальное напряжение помехи. Это такой "вредный" сигнал, который приходит вместе с "полезным" напряжением питания (или сигналом), его измеряют между двумя соединительными проводниками, "горячим" и "общим" проводами, или проще говоря - между двумя шинами питания.

2) Синфазное напряжение помехи. Этот сигнал измеряется между корпусом прибора (землей) и любым соединительным проводником. Особенность этой помехи в том, что она будет идентична на обоих проводах питания, т.е. в отличие от дифференциальной помехи её не поймать между проводами и она просачивается внутрь в обход обычных фильтров.

Блокировочный конденсатор

Конденсатор шунтирует дифференциальные ВЧ помехи и не пускает их дальше в аппарат. Надо не забыть разрядить его при выключении аппарата, а то взявшись нечаянно за вилку можно получить весьма ощутимую "мотивацию". Для этого ставим резистор, мирно греющийся в нормальном режиме работы. Ох не водить мне дружбы с "зелёными"...

Дроссель

Индуктивность (обыкновенный небольшой дроссель) формирует уже Г-образный LP фильтр с совместно с конденсатором. Конкретная частота среза фильтра нас не очень интересует. Дроссель потолще (лишь бы был рассчитан на _постоянный_ ток в несколько раз выше тока, потребляемого аппаратом), конденсатор побольше на напряжение не менее 310 вольт - и все довольны.

Синфазный трансформатор

Обмотки в таком трансформаторе идентичны и включены встречно, таким образом он беспрепятственно пропускает всё, что приходит как разница потенциалов между L и N. Иначе можно объяснить так: нормальный ток нагрузки создаёт встречные идентичные поля в сердечнике, которые взаимно компенсируются. Тогда зачем это всё - спросите вы?

Сердечник такого трансформатора остаётся неподмагниченным основной нагрузкой. Если же представить себе провода питания L и N вместе как один провод - то мы имеем немалую индуктивность на пути уже синфазной помехи, т.е. всего того, что наводится на обоих проводах одновременно. Провода же те, будь то обычный кабель питания за доллар, или экзотическое аудиофильское чудо - суть антенна, принимающая и станцию "Маяк", и всё, что излучают домашние электронные вонючки. Внутри же аудио агрегата нам и синфазная помеха ни к чему: через емкостную связь она может проникать в кишочки наших любимцев весьма агрессивно.

Два маленьких компаньона

Два маленьких конденсатора в компанию синфазному трансформатору. Они закорачивают на защитное заземление именно синфазную помеху и создают уже вкупе с синфазным трансформатором тоже своего рода Г-образный фильтр для синфазной помехи, не пускают её дальше в аппарат. Без них синфазная помеха, пусть и встретившая на своём пути немалое сопротивление нашего трансформатора - всё равно пойдёт искать свою жертву внутрь аппарата.

Антизвон

Антизвонная цепочка, или RC-цепь Цобеля. Несколько мистический зверёк, но очень полезный. Тут совместно с первичной обмоткой трансформатора в аппарате мы формируем колебательный контур с низкой добротностью, чтобы "поймать" то, что "выскочит" из первички при отключении питания. Искрогаситель. Защита остального фильтра и самого трансформатора от ЭДС самоиндукции при отключении в неудачный момент (при большом токе через первичку). Он так же вносит свою лепту в перевод ВЧ помех в тепло.

Не было бы конденсатора - такой низкоомный резистор просто взорвался бы от напряжения сети. Не было бы резистора - получили бы относительно высокодобротный контур совместно с первичкой и/или дросселем фильтра.

Другой взгляд: привносим чисто резистивную и весьма низкоомную составляющую импеданса нагрузки на ВЧ... Кто может объяснить лучше - милости прошу, помещу "в книжку" с сохранением авторства 😉

#ground_loop

Разрываем контур заземления

Резистор в параллель со встречно включенными диодами. В другой версии это мог бы быть дроссель. Включено это дело между защитным заземлением и корпусом прибора. Зачем, спросите вы - это, вроде, к фильтрации помех никакого отношения не имеет? Давайте разбираться.

Встречно включенные диоды успешно закоротят любую сильноточную утечку внутри корпуса прибора (коротыш какой, пробой) на защитное заземление. Тем самым мы соблюдаем требования техники безопасности: в случае аварии на корпусе прибора не должно появится опасного для жизни и здоровья человека напряжения. При этом диоды "разрывают" цепь для небольших напряжений.

Резистор создаёт путь для небольших токов. Если бы его не было, а внутренности прибора неплохо отвязаны от земли, то даже небольшие утечки создавали бы избыточный размах напряжения на корпусе относительно земли, и через емкостные связи это всё проникало бы в прибор.

Так для чего же всё-таки "отвязывать" защитную землю от корпуса? Дело в том, что на защитном заземлении могут наводиться напряжения: например той самой синфазной помехой, что мы отфильтровываем. Так же, увы, нередко встречается такая разводка сети, когда защитное заземление одновременно является и возвратным проводом для собственно напряжения сети. В этом случае даже на небольшом сопротивлении проводки немалый ток потребления создаёт ощутимое падение напряжения. Все эти факторы могут "разогнать" в нормальных условиях до десятков и даже сотен милливольт разницы потенциалов между защитными заземлениями разных агрегатов. Теперь, если мы передаём аудио-сигнал через соединения, заведённые одним проводом на корпус (RCA разъёмы "колокольчики", к сожалению так популярные в бытовом HiFi), то эта самая разность потенциалов между корпусами приборов будет напрямую замешана в сигнал.

Итого, отвязывая корпус прибора (а в большинстве случаев это значит - и сигнальную землю оного) от защитного заземления, мы тем самым ощутимо уменьшаем замешивание любых "чудачеств", что могут случиться в розетке - прямиком в сигнал. Конечно же, уважающий себя любитель качественного звуковоспроизведения будет использовать исключительно балансные соединения, иммунные к синфазной помехе. Только, увы, у меня ещё не все аппараты соединены исключительно балансными кабелями. А как с этим дело обстоит у вас, дорогой читатель? 😉

Собираем

Выключатель питания пристроен по принципу - где меньше искра будет. В остальном фильтр не сильно отличается от того, что ставят в дорогих компьютерных блоках питания. Кстати, оттуда же можно и детальками разжиться.

Тот фирменный аппарат, что я упомянул вначале статьи, тоже получил свою дозу фильтрации, подробности .

А ещё лучше - можно?

Можно! Экстремалы включают "встречно" огромные трансформаторы и фильтруют всё в низковольтной части. Результат несколько лучше, бюджет - на порядки выше.

Или возможно, вы захотите подарить своему лучшему другу - меломану недорогой подарок, за который он будет вам искренне благодарен? 😉 Взвесьте все за и против, и примите верное решение! .

This entry was posted in , by . Bookmark the .

Комментарии ВКонтакте

155 thoughts on “Сетевой фильтр для аудио — своими руками



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png