Сущность методов отсечения состоит в том, что сначала задача решается без условия целочисленности. Если полученный план целочисленный, задача решена. В противном случае к ограничениям задачи добавляется новое ограничение, обладающее следующими свойствами:

· оно должно быть линейным;

· должно отсекать найденный оптимальный нецелочисленный план;

· не должно отсекать ни одного целочисленного плана.

Дополнительное ограничение, обладающее указанными свойствами, называется правильным отсечением .

Геометрически добавление каждого линейного ограничения отвечает проведению прямой (гиперплоскости), которая отсекает от многоугольника (многогранника) решений некоторую его часть вместе с нецелыми координатами, но не затрагивает ни одной из целых точек этого многогранника. В результате новый многогранник решений содержит все целые точки, заключавшиеся в первоначальном многограннике решений и соответственно полученное при этом многограннике оптимальное решение будет целочисленным (рис. 6.24).

Один из алгоритмов решения задачи линейного целочисленного программирования (6.59)…(6.62), предложенный Гомори, основан на симплексном методе и использует достаточно простой способ построения правильного отсечения.

Рис. 6.18. Графическая иллюстрация целочисленного решения

Пусть задача линейного программирования (6.52)…(6.55) имеет конечный оптимум и на последнем шаге ее решения симплексным методом получены следующие уравнения, выражающие основные переменные через неосновные переменные оптимального решения

(6.56)

так, что оптимальным решением задачи (6.52)…(6.55) является , в котором, например β i − нецелая компонента. В этом случае можно доказать, что неравенство

сформированное по i -му уравнению системы (6.56), обладает всеми свойствами правильного отсечения.

В неравенстве (6.57) присутствует символ , означающий дробную часть числа. Число а называется конгруэнтным числу в (обозначается ) тогда и только тогда, когда разность а - в − целое число.

Целой частью числа а называется наибольшее целое число , не превосходящее а . Дробная часть числа определяется как разность между этим числом и его целой частью, т.е. . Например, для = 2, ; для = -3 и .

Для решения задачи целочисленного линейного программирования (6.52)…(6.55) методом Гомори используется следующий алгоритм:

1. Симплексным методом решить задачу (6.52)…(6.55) без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочисленного программирования (6.52)…(6.55). Если первая задача (6.52)…(6.54) неразрешима (т.е. не имеет конечного оптимума или условия ее противоречивы), то вторая задача (6.52)…(6.55) также неразрешима.


2. Если среди компонент оптимального решения есть нецелые, то выбрать компоненту с наибольшей целой частью и по соответствующему уравнению системы (6.56) сформировать правильное отсечение (6.57).

3. Неравенство (6.57) введением дополнительной неотрицательной целочисленной переменной преобразовать в равносильное уравнение

и включить его в систему ограничений (6.53).

4. Полученную расширенную задачу решить симплексным методом. Если найденный оптимальный план будет целочисленным, то задача целочисленного программирования (6.52)…(6.55) решена. В противном случае вернуться к п. 2 алгоритма.

Если задача разрешима в целых числах, то после конечного числа шагов (итераций) оптимальный целочисленный план будет найден.

Если в процессе решения появится уравнение (выражающее основную переменную через неосновные) с нецелым свободным членом и целыми остальными коэффициентами, то соответствующее уравнение не имеет решения в целых числах. В этом случае и данная задача не имеет целочисленного оптимального решения.

Недостатком метода Гомори является требование целочисленности для всех переменных − как основных (выражающих, например, в задаче об использовании ресурсов единицы продукции), так и дополнительных переменных (выражающих величину неиспользованных ресурсов, которые могут быть и дробными).

Отметим, что переход к каноническому виду в полностью целочисленной задаче линейного программирования, содержащей ограничения − неравенства

не приводит, вообще говоря, к полностью целочисленной задаче в каноническом виде, так как в преобразованных ограничениях (6.59)

вспомогательные переменные x n + i не подчинены требованию целочисленности.

Однако если все коэффициенты a ij , b i в (6.59) − целые числа, то условие целочисленности можно распространить и на x n + i , как это сделано при решении примера 6.10.

Полностью целочисленную задачу в каноническом виде можно получить также, если в (6.59) a ij , b i − рациональные числа. Для этого следует умножить (6.59) на общее кратное знаменателей коэффициентов − a ij , b i (т.е. перейти к целым коэффициентам в (6.59)) и лишь после этого ввести вспомогательные переменные .

Пример 6.20. Решить задачу полностью целочисленного программирования

при ограничениях

Решение. Приведем задачу к каноническому виду, введя дополнительные неотрицательные переменные . Получим систему ограничений:

Решаем задачу симплексным методом. Для наглядности решение иллюстрируем графически (рис. 6.19).

Рис. 6.19. Графическая иллюстрация решения задачи

На рис. 6.19 0KLM – область допустимых решений задачи ограниченная прямыми (1), (2), (3) и осями координат; L (2/3;8) – точка оптимального, но нецелочисленного решения задачи ; (4) – прямая, отсекающая это нецелочисленное решение; 0KNM – область допустимых решений расширенной задачи (6.64") N (2; 7) – точка оптимального целочисленного решения.

I шаг

х 1 х 2
х 3
х 4
х 5

Первое базисное решение Х 1 = (0;0;60;34;8) – допустимое. Соответствующее значение линейной функции f 1 = 0.

Переводим в основные переменные переменную х 2 , которая входит в выражение линейной функции с наибольшим положительным коэффициентом. Находим максимально возможное значение переменной х 2 , которое позволяет принять система ограничений, из условия минимума соответствующих отношений:

,

т.е. разрешающим (выделенным) является третье уравнение. При х 2 = 8 в этом уравнении х 5 = 0, и в неосновные переменные переходит х 5 .

II шаг . Основные переменные ; неосновные переменные .

х 1 х 5
х 3 -5
х 4 -4
х 2
-3 -24

Х 2 = (0;8;20;2;0); f = 24. Переводим в основные переменные х 1 , , а в неосновные х 4 .

Ш шаг . Основные переменные ; неосновные переменные . После преобразований получим:

х 4 х 5 х 4 х 5
х 3 -3 -3 х 3 -1 -1
х 1 -4 х 1 1/3 -4/3 2/3
х 2 х 2
-2 -1 -76 -2/3 -1/3 -76/3

Базисное решение Х 3 оптимально для задачи , так как в выражении линейной функции отсутствуют неосновные переменные с положительными коэффициентами.

Однако решение Х 3 не удовлетворяет условию целочисленности (6.55"). По первому уравнению с переменной х 1 , получившей нецелочисленное значение в оптимальном решении (2/3), составляем дополнительное ограничение (6.57):

Обращаем внимание на то, что согласно (6.56) и (6.57) берем дробную часть свободного члена с тем же знаком, который он имеет в уравнении, а дробные части коэффициентов при неосновных переменных х 4 и х 5 − с противоположными знаками.

Так как дробные части

то последнее неравенство запишем в виде

Введя дополнительную целочисленную переменную х 6 ≥ 0, получим равносильное неравенству (6.57") уравнение

Уравнение (6.58) необходимо включить в систему ограничений (6.56") исходной канонической задачи, после чего повторить процесс решения задачи симплексным методом применительно к расширенной задаче. При этом для сокращения числа шагов (итераций) рекомендуется вводить дополнительное уравнение (6.58") в систему, полученную на последнем шаге решения задачи (без условия целочисленности).

IV шаг . Основные переменные ; неосновные переменные .

х 4 х 5
х 1 1/3 -4/3 2/3
х 2
х 3 -1 -1
х 6 -1/3 -2/3 -2/3
-2/3 -1/3 -76/3

Базисное решение − недопустимое. Заметим, что после включения в систему ограничений дополнительного уравнения, соответствующего правильному отсечению, всегда будет получаться недопустимое базисное решение.

Для получения допустимого базисного решения необходимо перевести в основные переменную, входящую с положительным коэффициентом в уравнение, в котором свободный член отрицательный, т.е. х 4 или х 5 (на этом этапе линейную функцию не рассматриваем). Переводим в основные, например, переменную х 5 .

V шаг . Основные переменные ; неосновные переменные . Получим после преобразований:

х 4 х 6 х 4 х 6
х 1 -6/9 4/3 -12/9 х 1 -2
х 2 1/3 -1 -14/3 х 2 -1/2 3/2
х 3 1/3 38/3 х 3 -1/2 -3/2
х 5 -1/3 -2/3 х 5 1/2 -3/2
3/9 1/3 150/9 -1/2 -1/2 -25

Х 5 = (2;7;19;0;1;0); f 5 = 25.

Так как в выражении линейной функции нет основных переменных с положительными коэффициентами, то Х 5 − оптимальное решение.

Итак, f max = 25 при оптимальном целочисленном решении Шестая компонента содержательного смысла не имеет.

Для геометрической интерпретации на плоскости 0х 1 х 2 (см. рис. 6.19) отсечения (6.57") необходимо входящие в него переменные х 4 и х 5 выразить через переменные х 1 и х 2 . Получим (см. 2-е и 3-е уравнения системы ограничений (6.56"):

(см. отсечение прямой (4) на рис. 6.19).

Для решения целочисленных задач линейного программирования с произвольным числом переменных можно использовать метод Гомори, с помощью которого от области программ отсекаются точки с нецелочисленными координатами. Сформулируем алгоритм Гомори для решения целочисленной задачи линейного программирования в стандартной форме

Алгоритм Гомори

ГП С помощью симплекс-метода находим оптимальную программу. Если получились целочисленные значения для всех Xj , то задача решена. В противном случае среди Xj имеются нецслочисленные значения.

|~2~1 Среди нецелых Xj выбираем произвольный элемент х г и в задаче добавляем еще одно ограничение

что равносильно добавлению в симплекс-таблице еще одной строки, после чего она перестает соответствовать допустимому базисному решению новой задачи линейного программирования, которую она описывает. В ограничении применяются дробные части элементов строки, в которой находится х г. Применяемое обозначение для дробной части исходит из того, что всякое действительное число у можно представить в виде суммы у = [у] + {?у}, где [у] - целая часть и {у} = У ~ [у] ~ дробная часть.

[з] Находим допустимое базисное решение, считая новую строку разрешающей, т.е. I = п + 1.

  • а) Если все коэффициенты уц > 0, то задача не имеет решения (т.е. целочисленная задача решена).
  • б) В противном случае находим индекс к такой, что

(критерий входа в новый базис). Заметим, что выбор разрешающего элемента у и* не изменяет знак у критериев Aj.

[4] Если в новой таблице имеется хотя бы один х 3 s и повторить указанные процедуры необходимое число раз.

[~5~| Если полученное оптимальное решение целочисленно, то поставленная задача решена. В противном случае надо вернуться к пункту .

Пример 4.6.1. Решить методом Гомори целочисленную задачу

Решение. После добавления вспомогательных переменных имеется следующая задача линейного программирования в стандартной форме:


с матрицами


Таблица 1

Х 4

к = 1 Т

С помощью метода вращения заполним следующие таблицы. Разрешающий элемент - 6*.

Таблица 2

х 2

„ _ 1 Ж Z ~_3_

к" = 2 Т

Разрешающий элемент - 1/2*.

Х в ^ 0). Следовательно, программа {xi = 11/3, х 2 = 5} даст максимум экономической функции z, равный 1370/3 = 45б|, т.с. z = z max = 456§. "

Так как эта оптимальная программа не является целочисленной, применим алгоритм Гомори для нахождения целочисленной оптимальной программы. В качестве строки, на базе которой образуем дополнительную строку из дробных частей се элементов, выбираем вторую строку (индекс 7’ = 1). Заполним таблицу 3", добавив в таблицу 3 дополнительную строку (4.14) с дробными частями для дополнительной переменной Ж5 и дополнительный столбец. Получаем

к" = 4 Т

После добавления новой строки симплекс-таблица 3" перестает соответствовать допустимому базисному решению задачи, которую она описывает. Находим допустимое базисное решение, считая новую строку разрешающей, т.е. /" = 5.

Находим разрешающий столбец, т.с. индекс к" такой, что

(критерий входа в новый базис). Разрешающий элемент - (-2/3*). Заметим, что такой выбор разрешающего элемента не изменяет знак у критериев Aj.

Заполним симплекс-таблицу 4.

Таблица 4

Х 2

Х 2

Значения всех критериев ^ 0, (Х в ^ 0). Следовательно, программа {xi = 3, ж 2 = 6, х± = 1} дает максимум экономической функции г, равный 450, т.с. z = z ma ^ = 450. Эта оптимальная программа является целочисленной. ?

Пример 4.6.2. Решить методом Гомори целочисленную задачу

Решение. Имеется задача линейного программирования с матрицами



Заполним симплекс-таблицу с начальной программой.

Таблица 1

к = 1 Т

С помощью метода вращения заполним следующие таблицы. Разрешающий элемент - 1*.

Таблица 2

Х 2

Разрешающий элемент - 5*.

Таблица 3

Значения всех критериев ^ 0, (Х в ^ 0). Следовательно, программа {xi = 12/5, 24 = 1/5, 25 = 28/5} дает минимум экономической функции г, равный -11/5 = -2.2, т.с. z =

~min = -2.2.

Так как эта оптимальная программа не является целочисленной, применим алгоритм Гомори для нахождения целочисленной оптимальной программы. В качестве строки, на базе которой образуем дополнительную строку из дробных частей сс элементов, выбираем, например, третью етроку (индекс г = 5) с максимальной дробной частью. Заполним таблицу 3", добавив в таблицу 3 дополнительную строку (4.14) с дробными частями третьей строки для дополнительной переменной xq (эта строка позволяет отсечь от области программ части, содержащие точки с нецслочислснными координатами) и дополнительный столбец. Получаем

Таблица 3"

г -

к" = 3 Т

После добавления новой строки симплекс-таблица 3" перестает соответствовать допустимому базисному решению задачи, которую она описывает. Находим допустимое базисное решение, считая новую строку разрешающей, т.е. I" = 6.

Находим разрешающий столбец, т.е. индекс к" такой, что


(критерий входа в новый базис). Разрешающий элемент - (-3/5*). Заметим, что такой выбор разрешающего элемента не изменяет знак у критериев Aj.

Заполним симплекс-таблицу 4.

Таблица 4

Значения всех критериев ^ 0, (Х в ^ 0). Следовательно, программа {х = 2, Х 2 = 0, хз = 1, х 4 = 0, ж 5 = 5} даст минимум экономической функции z 9 равный (-2), т.с. z = -min = - 2. Эта оптимальная программа является целочисленной. ?

Задача 4.6.1. Решить методом Гомори целочисленную задачу

Ответ. Программа

дает минимум экономической функции z, равный (-31), т.с. z = 2 m i n = -31. Эта оптимальная программа является целочисленной.

Метод Гомори используют для нахождения целочисленного решения в задачах линейного программирования.
Пусть найдено решение задачи ЛП: . Решение L i будет целым числом, если т.е. . {β i } - дробная часть нецелочисленного оптимального решения x i , {d i } - дробная часть не базисных переменных. Данное соотношение определяет (см. рисунок).

Назначение сервиса . Онлайн-калькулятор применяется для решения задач целочисленного линейного программирования методом отсечений. В ходе решения используются симплексные таблицы. (см. пример).

Инструкция . Выберите количество переменных и количество строк (количество ограничений), нажмите Далее. Полученное решение сохраняется в файле Word (см. пример решения методом Гомори). Дополнительно создается шаблон решения в формате Excel .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте.

Виды алгоритма Гомори

  1. Первый алгоритм Гомори решения полностью целочисленных задач.
  2. Второй алгоритм Гомори для частично целочисленных задач линейного программирования .

Алгоритм Гомори для полностью целочисленных задач включает в себя следующие этапы:

  1. Решается задача линейного программирования без учета целочисленности.
  2. Среди дробных чисел выбирается элемент с наибольшей дробной частью и составляется дополнительное ограничение.
  3. Неравенство преобразуется в уравнение путем введения дополнительной неотрицательной переменной.
  4. Полученная задача решается двойственным симплекс-методом .
Если в процессе решения в симплексной таблице появится уравнение с нецелым свободным членов b i и целыми коэффициентами a ij , то данная задача не имеет целочисленного оптимального решения.

Пример . Научно-производственное объединение «Стрела» занимается изготовлением комплектующих изделий для предприятий ВПК. При изготовлении изделий типа А и типа В используются сталь и цветные металлы. Технологический процесс также включает обработку изделий на токарных и фрезерных станках. По технологическим нормам на производство одного изделия типа А и одного изделия типа В требуется определенное количество сырья и некоторый объем станко-часов для обработки на станках в цеху. Технологические данные производственного процесса приведены в таблице.
В течение месяца цеха НПО «Стрела» располагает ограниченными ресурсами по сырью и по времени работы в производственных цехах (см. таблицу). Прибыль от реализации одного изделия типа А составляет 100 руб., а от единицы изделия типа В - 250 руб.

Сырье Работа в цеху, станко-час Прибыль от реализации, руб.
Цветные металлы Сталь Токарные работы Фрезерные работы
Изделие А 10 25 41 90 100
Изделие В 30 25 90 50 250
Ресурсы 4500 6250 14100 18000

Найти оптимальный план производства для НПО «Стрела» (количество изделия типа А и типа В - целые числа), дающий наибольшую прибыль.

Решение.
Экономико-математическая модель задачи.
x 1 - план производства изделий типа А, x 2 - план производства изделий типа В,
x 1, x 2 - целые числа.
Ограничения по ресурсам
10x 1 + 30x 2 ≤ 4500
25x 1 + 25x 2 ≤ 6250
41x 1 + 90x 2 ≤ 14100
90x 1 + 50x 2 ≤ 18000
Целевая функция
100x 1 + 250x 2 → max

Решим прямую задачу линейного программирования симплексным методом . В результате получаем следующий оптимальный план:

Базис B x 1 x 2 x 3 x 4 x 5 x 6
x 2 1450 / 11 0 1 41 / 330 0 -1 / 33 0
x 4 17500 / 11 0 0 245 / 66 1 -50 / 33 0
x 1 600 / 11 1 0 -3 / 11 0 1 / 11 0
x 6 6500 0 0 55 / 3 0 -20 / 3 1
F(X3) 422500 / 11 0 0 125 / 33 0 50 / 33 0

x 1 = 54 6 / 11 , x 2 = 131 9 / 11
F(X) = 250 131 9 / 11 + 100 54 6 / 11 = 38409 1 / 11

Полученный оптимальный план не является целочисленным, поэтому применяем метод Гомори . Наибольшая дробная часть находится во втором уравнении у переменной x 4 (10 / 11). Составляем дополнительное ограничение:
q 2 - q 21 x 1 - q 22 x 2 - q 23 x 3 - q 24 x 4 - q 25 x 5 - q 26 x 6 ≤0
q 2 = b 2 - = 1590 10 / 11 - 1590 = 10 / 11
q 2 1 = a 2 1 - = 0 - 0 = 0
q 2 2 = a 2 2 - = 0 - 0 = 0
q 2 3 = a 2 3 - = 3 47 / 66 - 3 = 47 / 66
q 2 4 = a 2 4 - = 1 - 1 = 0
q 2 5 = a 2 5 - = -1 17 / 33 + 2 = 16 / 33
q 2 6 = a 2 6 - = 0 - 0 = 0

10 / 11 - 47 / 66 x 3 - 16 / 33 x 5 ≤ 0

10 / 11 - 47 / 66 x 3 - 16 / 33 x 5 + x 7 = 0

Поскольку двойственный симплекс-метод используется для поиска минимума целевой функции, делаем преобразование F(x) = -F(X).

Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7
x 2 1450 / 11 0 1 41 / 330 0 -1 / 33 0 0
x 4 17500 / 11 0 0 245 / 66 1 -50 / 33 0 0
x 1 600 / 11 1 0 -3 / 11 0 1 / 11 0 0
x 6 6500 0 0 55 / 3 0 -20 / 3 1 0
x 7 -10 / 11 0 0 -47 / 66 0 -16 / 33 0 1
F(X0) -422500 / 11 0 0 -125 / 33 0 -50 / 33 0 0

Первая итерация Гомори. 1. Проверка критерия оптимальности. План в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной. Среди отрицательных значений базисных переменных выбираем наибольшее по модулю. Ведущей будет пятая строка, а переменную x 7 следует вывести из базиса.
3. Определение новой базисной переменной. Минимальное значение θ соответствует пятому столбцу, т.е. переменную x 5 необходимо ввести в базис. На пересечении ведущих строки и столбца находится разрешающий элемент (РЭ), равный (-16 / 33).
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7
x 2 131 9 / 11 0 1 41 / 330 0 -1 / 33 0 0
x 4 1590 10 / 11 0 0 3 47 / 66 1 -1 17 / 33 0 0
x 1 54 6 / 11 1 0 -3 / 11 0 1 / 11 0 0
x 6 6500 0 0 18 1 / 3 0 -6 2 / 3 1 0
x 7 -10 / 11 0 0 -47 / 66 0 -16 / 33 0 1
F(X0) -38409 1 / 11 0 0 -3 26 / 33 0 -1 17 / 33 0 0
θ - - -3 26 / 33: (-47 / 66) = 5 15 / 47 - -1 17 / 33: (-16 / 33) = 3 1 / 8 - -

4. Пересчет симплекс-таблицы выполняем с помощью метода Жордано-Гаусса.
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7
x 2 1055 / 8 0 1 27 / 160 0 0 0 -1 / 16
x 4 6375 / 4 0 0 95 / 16 1 0 0 -25 / 8
x 1 435 / 8 1 0 -13 / 32 0 0 0 3 / 16
x 6 13025 / 2 0 0 225 / 8 0 0 1 -55 / 4
x 5 15 / 8 0 0 47 / 32 0 1 0 -33 / 16
F(X0) -153625 / 4 0 0 -25 / 16 0 0 0 -25 / 8

В полученном оптимальном плане присутствуют дробные числа. По первому уравнению с переменной x 2 , получившей нецелочисленное значение в оптимальном плане с наибольшей дробной частью 7 / 8 , составляем дополнительное ограничение:
q 1 - q 11 x 1 - q 12 x 2 - q 13 x 3 - q 14 x 4 - q 15 x 5 - q 16 x 6 - q 17 x 7 ≤0
q 1 = b 1 - = 131 7 / 8 - 131 = 7 / 8


q 1 3 = a 1 3 - = 27 / 160 - 0 = 27 / 160



q 1 7 = a 1 7 - = -1 / 16 + 1 = 15 / 16
Дополнительное ограничение имеет вид:
7 / 8 - 27 / 160 x 3 - 15 / 16 x 7 ≤ 0
Преобразуем полученное неравенство в уравнение:
7 / 8 - 27 / 160 x 3 - 15 / 16 x 7 + x 8 = 0
коэффициенты которого введем дополнительной строкой в оптимальную симплексную таблицу.

Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
x 2 1055 / 8 0 1 27 / 160 0 0 0 -1 / 16 0
x 4 6375 / 4 0 0 95 / 16 1 0 0 -25 / 8 0
x 1 435 / 8 1 0 -13 / 32 0 0 0 3 / 16 0
x 6 13025 / 2 0 0 225 / 8 0 0 1 -55 / 4 0
x 5 15 / 8 0 0 47 / 32 0 1 0 -33 / 16 0
x 8 -7 / 8 0 0 -27 / 160 0 0 0 -15 / 16 1
F(X0) -153625 / 4 0 0 -25 / 16 0 0 0 -25 / 8 0

Вторая итерация Гомрои. 1. Проверка критерия оптимальности. План в симплексной таблице является псевдопланом, поэтому определяем ведущие строку и столбец.
2. Определение новой свободной переменной. Среди отрицательных значений базисных переменных наибольшей по модулю является переменная x 8 . Ее следует вывести из базиса.
3. Минимальное значение θ соответствует седьмому столбцу, т.е. переменную x 7 необходимо ввести в базис.
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
x 2 131 7 / 8 0 1 27 / 160 0 0 0 -1 / 16 0
x 4 1593 3 / 4 0 0 5 15 / 16 1 0 0 -3 1 / 8 0
x 1 54 3 / 8 1 0 -13 / 32 0 0 0 3 / 16 0
x 6 6512 1 / 2 0 0 28 1 / 8 0 0 1 -13 3 / 4 0
x 5 1 7 / 8 0 0 1 15 / 32 0 1 0 -2 1 / 16 0
x 8 -7 / 8 0 0 -27 / 160 0 0 0 -15 / 16 1
F(X0) -38406 1 / 4 0 0 -1 9 / 16 0 0 0 -3 1 / 8 0
θ - - -1 9 / 16: (-27 / 160) = 9 7 / 27 - - - -3 1 / 8: (-15 / 16) = 3 1 / 3 -

4. Выполняем преобразование Новых отсечений Гомори.
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8
x 2 1979 / 15 0 1 9 / 50 0 0 0 0 -1 / 15
x 4 4790 / 3 0 0 13 / 2 1 0 0 0 -10 / 3
x 1 271 / 5 1 0 -11 / 25 0 0 0 0 1 / 5
x 6 19576 / 3 0 0 153 / 5 0 0 1 0 -44 / 3
x 5 19 / 5 0 0 46 / 25 0 1 0 0 -11 / 5
x 7 14 / 15 0 0 9 / 50 0 0 0 1 -16 / 15
F(X0) -115210 / 3 0 0 -1 0 0 0 0 -10 / 3

В оптимальном плане присутствуют дробные числа. Наибольшая дробная часть у переменной x 2 (14 / 15). Составляем дополнительное ограничение: q 1 - q 11 x 1 - q 12 x 2 - q 13 x 3 - q 14 x 4 - q 15 x 5 - q 16 x 6 - q 17 x 7 - q 18 x 8 ≤0
q 1 = b 1 - = 131 14 / 15 - 131 = 14 / 15
q 1 1 = a 1 1 - = 0 - 0 = 0
q 1 2 = a 1 2 - = 1 - 1 = 0
q 1 3 = a 1 3 - = 9 / 50 - 0 = 9 / 50
q 1 4 = a 1 4 - = 0 - 0 = 0
q 1 5 = a 1 5 - = 0 - 0 = 0
q 1 6 = a 1 6 - = 0 - 0 = 0
q 1 7 = a 1 7 - = 0 - 0 = 0
q 1 8 = a 1 8 - = -1 / 15 + 1 = 14 / 15
Дополнительное ограничение имеет вид:
14 / 15 - 9 / 50 x 3 - 14 / 15 x 8 ≤ 0
Преобразуем полученное неравенство в уравнение:
14 / 15 - 9 / 50 x 3 - 14 / 15 x 8 + x 9 = 0
коэффициенты которого введем дополнительной строкой в оптимальную симплексную таблицу.

Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9
x 2 1979 / 15 0 1 9 / 50 0 0 0 0 -1 / 15 0
x 4 4790 / 3 0 0 13 / 2 1 0 0 0 -10 / 3 0
x 1 271 / 5 1 0 -11 / 25 0 0 0 0 1 / 5 0
x 6 19576 / 3 0 0 153 / 5 0 0 1 0 -44 / 3 0
x 5 19 / 5 0 0 46 / 25 0 1 0 0 -11 / 5 0
x 7 14 / 15 0 0 9 / 50 0 0 0 1 -16 / 15 0
x 9 -14 / 15 0 0 -9 / 50 0 0 0 0 -14 / 15 1
F(X0) -115210 / 3 0 0 -1 0 0 0 0 -10 / 3 0

Третья итерация методом Гомори. Переменную x 9 следует вывести из базиса. Минимальное значение θ соответствует восьмому столбцу, т.е. переменную x 8 необходимо ввести в базис.
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9
x 2 131 14 / 15 0 1 9 / 50 0 0 0 0 -1 / 15 0
x 4 1596 2 / 3 0 0 6 1 / 2 1 0 0 0 -3 1 / 3 0
x 1 54 1 / 5 1 0 -11 / 25 0 0 0 0 1 / 5 0
x 6 6525 1 / 3 0 0 30 3 / 5 0 0 1 0 -14 2 / 3 0
x 5 3 4 / 5 0 0 1 21 / 25 0 1 0 0 -2 1 / 5 0
x 7 14 / 15 0 0 9 / 50 0 0 0 1 -1 1 / 15 0
x 9 -14 / 15 0 0 -9 / 50 0 0 0 0 -14 / 15 1
F(X0) -38403 1 / 3 0 0 -1 0 0 0 0 -3 1 / 3 0
θ - - -1: (-9 / 50) = 5 5 / 9 - - - - -3 1 / 3: (-14 / 15) = 3 4 / 7 -

4. Выполняем преобразование.
Базис B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9
x 2 132 0 1 27 / 140 0 0 0 0 0 -1 / 14
x 4 1600 0 0 50 / 7 1 0 0 0 0 -25 / 7
x 1 54 1 0 -67 / 140 0 0 0 0 0 3 / 14
x 6 6540 0 0 234 / 7 0 0 1 0 0 -110 / 7
x 5 6 0 0 317 / 140 0 1 0 0 0 -33 / 14
x 7 2 0 0 27 / 70 0 0 0 1 0 -8 / 7
x 8 1 0 0 27 / 140 0 0 0 0 1 -15 / 14
F(X0) -38400 0 0 -5 / 14 0 0 0 0 0 -25 / 7

Решение получилось целочисленным. Оптимальный целочисленный план можно записать так: x 1 = 54, x 2 = 132. F(X) = 38400

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра вычислительной техники и информационных технологий

РЕШЕНИЕ ЗАДАЧ ЛИНЕЙНОГО ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ МЕТОДОМ ГОМОРИ

Методические указания и задания к практическим занятиям по курсу

«Экономико-математические методы» для студентов экономических специальностей

Составитель Н.Ю.Коломарова

Утверждены на заседании кафедры Протокол № 5 от 30.11.99

Электронная копия находится в библиотеке главного корпуса КузГТУ

Кемерово 2000

1. ПОСТАНОВКА ЗАДАЧИ

Существует ряд задач оптимального планирования, в которых переменные могут принимать лишь целочисленные значения. Такие задачи связаны с определением количества единиц неделимой продукции, числа станков при загрузке оборудования, численности работников в структурных подразделениях предприятия и т.д. Достаточно часто возникают задачи с так называемыми булевыми переменными, решениями которых являются суждения типа «да-нет». Если функция и ограничения в таких задачах линейны, то мы говорим о задаче линейного целочисленного программирования.

Задача линейного целочисленного программирования формулиру-

ется следующим образом: найти такое решение (план)

Х = (x1 , x2 , ..., xn ),

принимает максимальное или минимальное значение при ограничениях

2. МЕТОД ГОМОРИ

Одним из методов решения задач линейного целочисленного программирования является метод Гомори. Сущность метода заключается в построении ограничений, отсекающих нецелочисленные решения задачи линейного программирования, но не отсекающих ни одного целочисленного плана.

Рассмотрим алгоритм решения задачи линейного целочисленного программирования этим методом.

1. Решаем задачу симплексным методом без учета условия целочисленности. Если все компоненты оптимального плана целые, то он является оптимальным и для задачи целочисленного программирования. Если обнаруживается неразрешимость задачи, то и неразрешима задача целочисленного программирования.

2. Если среди компонент оптимального решения есть нецелые, то к ограничениям задачи добавляем новое ограничение, обладающее следующими свойствами:

Оно должно быть линейным; - должно отсекать найденный оптимальный нецелочисленный

план; - не должно отсекать ни одного целочисленного плана.

Для построения ограничения выбираем компоненту оптимального плана с наибольшей дробной частью и по соответствующей этой компоненте k -й строке симплексной таблицы записываем ограничение Гомори.

f k = ∑

f kj x j − S * ,S * ≥ 0 ,

где f k

Xj - ;

Zkj - ;

Новая переменная;

Ближайшее целое, не превосходящееx j иz kj соответст-

Составленное ограничение добавляем к имеющимся в сим-

плексной таблице, тем самым получаем расширенную задачу. Чтобы получить опорный план этой задачи, необходимо ввести в базис тот

вектор, для которого величина

∆ j

минимальна. И если для этого век-

f kj

тора величина θ = min

получается по дополнительной строке, то в

z ij> 0

следующей симплексной таблице будет получен опорный план. Если же величина θ не соответствует дополнительной строке, то необходимо

переходить к М-задаче (вводить искусственную переменную в ограничение Гомори).

4. Решаем при помощи обычных симплексных преобразований полученную задачу. Если решение этой задачи приводит к целочисленному оптимальному плану, то искомая задача решена. Если мы получили нецелочисленное решение, то снова добавляем одно дополнительное ограничение, и процесс вычислений повторяется. Проделав конечное число итераций, либо получаем оптимальный план задачи целочисленного программирования, либо устанавливаем ее неразрешимость.

Замечания:

1. Если дополнительная переменная S * вошла в базис, то после пересчета какого-либо последующего плана соответствующие ей строку и столбец можно удалить (тем самым сокращается размерность задачи).

2. Если для дробного x j обнаружится целочисленность всех коэффициентов соответствующего уравнения (строки), то задача не имеет целочисленного решения.

3. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ МЕТОДОМ ГОМОРИ

Задача: Для приобретения нового оборудования предприятие выделяет 19 ден.ед. Оборудование должно быть размещено на площади, не превышающей 16 кв.м. Предприятие может заказать оборудование двух видов: машины типа «А» стоимостью 2 ден.ед., требующие производственную площадь 4 кв.м и обеспечивающие производительность за смену 8 т продукции, и машины типа «В» стоимостью 5 ден.ед., занимающие площадь 1 кв.м и обеспечивающие производительность за смену 6 т продукции.

Требуется составить оптимальный план приобретения оборудования, обеспечивающий максимальную общую производительность.

Решение: Обозначим черезx 1 ,x 2 количество машин соответственно типа «А» и «В», черезL - их общую производительность. Тогда математическая модель задачи:

max L = 8 x1 +6 x2

при ограничениях:

2x 1

5x 2

4x 1

x 1≥

0, x2 ≥ 0

x1 , x2 - целые числа

Решаем задачу симплексным методом без учета целочисленности.

∆ j

∆ j

∆ j

Получен оптимальный нецелочисленный план Х опт = (61/18;22/9).

L max = 376/9.

Т.к. у компоненты плана х 2 максимальная дробная часть: max(4/9;7/18) = 4/9, то дополнительное ограничение записываем по первой строке.

22/9 - = (2/9 - )x 3 + (-1/9 - [-1/9])x 4 -S 1 , S 1 ≥0 22/9 - 2 = (2/9 - 0)x 3 + (-1/9 - (-1))x 4 -S 1 , S 1 ≥0

4/9 = 2/9x3 + 8/9x4 - S1 , S1 ≥ 0 - первое ограничение Гомори

Составленное ограничение дописываем к имеющимся в симплексной таблице.

После построения дополнительного ограничения имеем новую задачу линейного программирования, в которой 3 ограничения. Для получения опорного плана этой задачи необходимо найти третий базис-

ный вектор. Для этого определяем: min

f kj

базис вводим вектор х 4 .

4 / 9

Рассчитываем величину θ =

z ij> 0

8 / 9

Минимальное значение θ получено по дополнительной строке, значит, не прибегая к искусственной переменной, получаем опорный план расширенной задачи.

∆ j

Найденный план оптимален, но нецелочисленный. Строим новое ограничение Гомори.

Т.к. максимальная дробная часть среди компонент плана равна 1/2, записываем дополнительное ограничение по первой строке (можно и по третьей).

5/2 - = (1/4 - )x 3 + (-1/8 - [-1/8])S 1 -S 2 , S 2 ≥0

1/2 = 1/4x3 + 7/8S1 - S2 , S2 ≥ 0 - второе ограничение Гомори

Это ограничение добавляем в последнюю симплексную таблицу.

Получили задачу, в которой 4 ограничения, следовательно, в базисе должно быть 4 единичных вектора.

2 . Можно

ввести либо x 3 , либоS 1 . Введем векторS 1 .

1/ 2

4 / 7

соответствует дополнительному

7 / 8

ограничению.

∆ j

Получаем новый оптимальный нецелочисленный план. Учитывая замечание 1, вычеркиваем строку и столбец, соответствующие пере-

менной S 1 .

В полученном плане максимальную дробную часть имеет компонента х 2 , поэтому записываем дополнительное ограничение по первой строке.

4/7 = 2/7x3 + 6/7S2 - S3 , S3 ≥ 0

Третье ограничение Гомори.

Определяем вектор, вводимый в базис:

вектор х 3 . Минимальное значениеθ = 2, что соответствует дополнительной строке.

После проведения очередных симплексных преобразований получили:

∆ j

План Х 5 - оптимальный нецелочисленный. Дополнительное ограничение запишем по второй строке:

1/2 = 1/4S3 - S4 , S4 ≥ 0

Четвертое ограничение Гомори.

Т.к. базисной компонентой может быть S 3 , определяем величину

0. Минимальное значение θ получилось по 3

строке, а не по строке Гомори, следовательно, переходим к М-задаче:

введем дополнительную переменную х 5

в ограничение Гомори.

С5 ’

Б5 ’

Х5 ’

∆ j

∆ j

∆ j

Дробная часть = max(1/3; 2/3) = 2/3

дополнительное ограниче-

ние записываем по второй строке.

2/3 = 1/3х4 + 2/3S4 - S5

S5 ≥

Пятое ограничение Гомори.

16 / 3

2 вводим х 4 .

Вектор, вводимый в базис: min

2 / 3

θ =

соответствует строке Гомори.

∆ j

План Х 8 = (3; 2; 3; 2) - оптимальный целочисленный.L max = 36.

Экономическая интерпретация: согласно полученному решению предприятию необходимо закупить 3 машины типа «А» и 2 машины типа «В». При этом будет достигнута максимальная производительность работы оборудования, равная 36 т продукции за смену. Полученную экономию денежных средств в размере 3 ден.ед. можно будет направить на какие-либо иные цели, например, на премирование рабочих, которые будут заниматься отладкой полученного оборудования. На излишнюю площадь в 2 кв.м можно поставить ящик с цветами.

Геометрическая интерпретация метода Гомори: строим множе-

ство планов (см. рисунок). В точке 1 - оптимальный нецелочисленный план.

Метод Гомори решения задач целочисленного программирования является методом отсечения .

Суть метода заключается в построении ограничений, отсекающих нецелочисленные решения задачи линейного программирования, но не отсекающих ни одного целочисленного плана. Для этого сначала решается ослабленная задача линейного программирования без учета условия целочисленности переменных.

Если полученное решение задачи линейного программирования является целочисленным, то задача целочисленного программирования также решена и найденное решение является оптимальным и для нее. Если же в найденном решении задачи линейного программирования одна или большее число переменных не целые, то для отыскания целочисленного решения задачи добавляются новое линейное ограничение, которое отсекает нецелочисленные решения. При продолжении решения расширенной задачи двойственным симплексным методом с учетом этого ограничения получается целочисленный план.

Для нахождения целочисленного решения задачи методом Гомори используется следующий алгоритм.

Оно должно быть линейным;

Должно отсекать найденный оптимальный нецелочисленный план;

Не должно отсекать ни одного целочисленного плана.

Если нецелых базисных переменных несколько, то для составления ограничения выбираем компоненту оптимального плана с наибольшей дробной частью (если таких переменных несколько, то выбираем любую).

Этой переменной соответствует строка симплексной таблицы, называемая строкой, производящей отсечение (производящей строкой ).

Для изложения метода вводим следующие понятия. Пусть a – действительное число.

Под целой частью некоторого числа а понимается максимальное целое число [a ], не превосходящее данного.

Под дробной частью некоторого числа а понимается наименьшее неотрицательное число
такое, что разность между ним иа есть [a ] – целая часть числа).

Для выбранной базисной переменной с наибольшей дробной частью находим дробную часть
этой переменной и дробные части всех коэффициентов при переменныхi - й строки системы ограничений
(производящей строкой).

Обозначим
и
целые части чисел и . Величины дробных частей
и
(
) определяются следующим образом


Для этого по производящей строке симплексной таблицы выписывается уравнение, предполагая, что первые m переменных являются базисными для данного оптимального плана

или

Переносим все целые части коэффициентов в одну сторону, оставляя все дробные в другой:

Так как
<1, то заменяя в правой части
, получим строгое неравенство

Так как левая часть неравенства должна принимать целые значения, то, следовательно, необходимое условие ее целочисленности можно записать только в следующем виде:

    Неравенство преобразуется в уравнение путем введения дополнительной неотрицательной переменной и включается в оптимальную симплексную таблицу.

    Решаем задачу, используя двойственный симплексный метод. Если новый оптимальный план расширенной задачи будет целочисленным, то задача решена. Если же решение нецелое, то нужно повторять алгоритм метода Гомори вплоть до получения целочисленного решения.

Пример . Методом Гомори найти решение задачи целочисленного программирования, состоящей в определении максимального значения функции
при условии

Решение . Выравнивая неравенства с помощью вспомогательных переменных х 3 , х 4 , получаем задачу линейного программирования в канонической форме:

Решаем задачу линейного программирования симплексным методом, используя поэтапный переход от одного базиса к другому. Ход решения задачи и полученное оптимальное решение представлены в таблицах.

С Б

С 2 =11

j =Z j –С j

С Б

С 2 =11

j =Z j –С j

В найденном оптимальном плане значение переменной х 2 равно дробному числу. Находим его дробную часть и дробные части всех элементов строки, содержащей переменную х 2 , а именно:



Теперь составляем для найденных значений дробных частей неравенство Гомори:

.

х 5 , переносим свободный член уравнения в правую часть и получаем новое ограничение:

.

Добавляем в симплексную таблицу строку, содержащую новое ограничение, и столбец, содержащий новую переменную, и продолжаем решать задачу двойственным симплексным методом, так как теперь в таблице записан псевдоплан.

j =Z j С j

С Б

С 2 =11

j =Z j С j

Полученное оптимальное решение расширенной задачи содержит нецелое значение переменной х 1 , поэтому находим для этой строки дробные части всех нецелых чисел, а именно:


и новое неравенство Гомори имеет вид:

Выравниваем неравенство Гомори с помощью новой вспомогательной переменной х 6 , переносим свободный член уравнения в правую часть и получаем новое ограничение:
.

Добавляем его к решаемой задаче, выравниваем с помощью вспомогательной переменной и решаем расширенную задачу

С Б

С 2 =11

j =Z j С j

С Б

С 2 =11

j =Z j С j

Таким образом, найдено оптимальное решение задачи целочисленного программирования: Z max =11 при
.

Замечания :

Если в процессе решения в симплексной таблице появится уравнение с нецелой компонентой и целыми коэффициентами в соответствующей строке системы ограничений
, то данная задача не имеет целочисленного решения.



Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png